On the origin of noble gases in mantle plumes.
نویسندگان
چکیده
The chemical differences between deep- and shallow-mantle sources of oceanic basalts provide evidence that several distinct components coexist within the Earth's mantle. Most of these components have been identified as recycled in origin. However, the noble-gas signature is still a matter of debate and questions the preservation of primitive regions in the convective mantle. We show that a model where the noble-gas signature observed in Hawaii and Iceland comes from a pristine homogeneous deep layer would imply a primitive (3)He content and (3)He/(22)Ne ratio that are very unlikely. On the contrary, mass balances show that the partly degassed peridotite of a marble-cake mantle can be the noble-gas end-member with an apparent 'primitive'-like composition. This component is mixed with recycled oceanic crust in different proportions in the plume sources and in the shallow mantle. A recycling model of the mantle, involving gravitational segregation of the oceanic crust at the bottom of the mantle, potentially satisfies trace-element as well as noble-gas constraints.
منابع مشابه
Late Impacts and the Origins of the Atmospheres on Venus, Earth, and Mars
Introduction. Diverse origins of terrestrial planet atmospheres are inferred from differences in the noble gas abundances and isotope ratios observed on Venus, Earth, and Mars [e.g., 1, 2]. Models for the origin of terrestrial atmospheres typically require an intricate sequence of events, including substantial loss and isotopic fractionation of solar nebula gases, outgassed mantle volatiles, an...
متن کاملWhat CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere.
Study of commercially produced volcanic CO2 gas associated with the Colorado Plateau, USA, has revealed substantial new information about the noble gas isotopic composition and elemental abundance pattern of the mantle. Combined with published data from mid-ocean ridge basalts, it is now clear that the convecting mantle has a maximum (20)Ne/(22)Ne isotopic composition, indistinguishable from th...
متن کاملThe Accretionary Origin of Noble Gases in the Earth’s Mantle
Introduction: An outstanding problem in the Earth and planetary sciences is the source and mechanism by which the Earth-like planets accreted their highly volatile elements. Unlike highly refractory elements, which preserve close to solar proportions in even quite evolved meteorites and the inner planets, moderately refractory and more volatile elements are depleted relative to the highly refra...
متن کاملPrimordial Krypton in the Terrestrial Mantle Is Not Solar
Introduction: Noble gases are key tracers for the origin of volatiles in the terrestrial planets and of interaction between mantle reservoirs and the atmosphere. General consensus is that material accreting in the solar nebula and nebula gases from the Sun itself were incorporated into the terrestrial planets, providing a starting point for models of planetary evolution. However, the isotopic s...
متن کاملGeochemical and Planetary Dynamical Views on the Origin of Earth’s Atmosphere and Oceans
Earth’s volatile elements (H, C, and N) are essential to maintaining habitable conditions for metazoans and simpler life forms. However, identifying the sources (comets, meteorites, and trapped nebular gas) that supplied volatiles to Earth is not straightforward because secondary processes such as mantle degassing, crustal recycling, and escape to space modified the composition of the atmospher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 360 1800 شماره
صفحات -
تاریخ انتشار 2002